Radio-frequency identification


Radio-frequency identification (RFID) is the wireless non-contact use of radio-frequency electromagnetic fields to transfer data, for the purposes of automatically identifying and tracking tags attached to objects. Some tags require no battery and are powered and read at short ranges via magnetic fields (electromagnetic induction). Others use a local power source and emit radio waves (electromagnetic radiation at radio frequencies). The tag contains electronically stored information which may be read from up to several meters away. Unlike a bar code, the tag does not need to be within line of sight of the reader and may be embedded in the tracked object.

RFID tags are used in many industries. An RFID tag attached to an automobile during production can be used to track its progress through the assembly line. Pharmaceuticals can be tracked through warehouses. Livestock and pets may have tags injected, allowing positive identification of the animal.

Since RFID tags can be attached to clothing, possessions, or even implanted within people, the possibility of reading personally-linked information without consent has raised privacy concerns.






The RFID tag can be affixed to an object and used to track and manage inventory, assets, people, etc. For example, it can be affixed to cars, computer equipment, books, mobile phones, etc.

RFID offers advantages over manual systems or use of bar codes. The tag can be read if passed near a reader, even if it is covered by the object or not visible. The tag can be read inside a case, carton, box or other container, and unlike barcodes, RFID tags can be read hundreds at a time. Bar codes can only be read one at a time using current devices.

In 2011, the cost of passive tags started at US$0.09 each; special tags, meant to be mounted on metal or withstand gamma sterilization, can go up to US$5. Active tags for tracking containers, medical assets, or monitoring environmental conditions in data centers start at US$50 and can go up over US$100 each. Battery Assisted Passive (BAP) tags are in the US$3–10 range and also have sensor capability like temperature and humidity.

RFID can be used in a variety of applications,such as:

§  Access management

§  Tracking of goods

§  Tracking of persons and animals

§  Toll collection and contactless payment

§  Machine readable travel documents

§  Smartdust (for massively distributed sensor networks)

§  Tracking sports memorabilia to verify authenticity

§  Airport baggage tracking logistics

In 2010 three key factors drove a significant increase in RFID usage: decreased cost of equipment and tags, increased performance to a reliability of 99.9% and a stable international standard around UHF passive RFID. The adoption of these standards were driven by EPCglobal, a joint venture between GS1 and GS1 US, which were responsible for driving global adoption of the barcode in the 1970s and 1980s. The EPCglobal Network was developed by the Auto-ID Center, an academic research project headquartered at the Massachusetts Institute of Technology (MIT) with labs at five leading research universities around the globe: Cambridge, Adelaide, Keio, Shanghai, Fudan, St. Gallen.At RFID Journal Live 2010 in Orlando, Airbus detailed 16 active projects, IBM and—most recently added to the team—CSC. The two other areas of significant use are financial services for IT asset tracking and healthcare. RFID is becoming increasingly prevalent as the price of the technology decreases.